If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-3p-16=0
a = 2; b = -3; c = -16;
Δ = b2-4ac
Δ = -32-4·2·(-16)
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{137}}{2*2}=\frac{3-\sqrt{137}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{137}}{2*2}=\frac{3+\sqrt{137}}{4} $
| 8/3x+2=4/2x | | 3(7/4y+18/4)+5y=34 | | 0.6x-14=1.4x-18 | | 8.2-2x-6=0 | | 8(4x+12)-3=68 | | 36=2x^2+2x+40 | | 4x-2x+8=6x+24 | | 36x=2x^2+2x+40 | | 5x+4x=6x-3x | | 5(4x+2)=2(10x+4) | | 1/4x-3x/4x=28/4X | | 1/x+2+4=21/x+2 | | 6x-(4x+5)=5x-47 | | 9x=129 | | 2t+2=3t-5 | | 5p=3p+3 | | 4y*6/2*18^3=32 | | (a*10)*(a/10)=200 | | X^2+x12=28 | | 20^2-27x-14=0 | | x=4.7=6.3 | | 10.2=0.6y | | 1/x+4/x-2=0 | | 6-2x+5=x-13 | | -2+p-2p=-2-p | | (40x)+(20(1.5x))=1480 | | 40x+(20(1.5x))=1480 | | 5n+13=3n+5 | | 40x+20(1.5x)=1480 | | 257.66x-22=342.89x+33-34x | | 7.25(y+8)=20y+8.25 | | P+7=3p+7 |